Journal of Organometallic Chemistry, 152 (1978) 33-38 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ACYCLISCHE ISOMERE VON AMINOFLUORSILANEN, INTRAMOLEKULARE CYCLISIERUNG

UWE KLINGEBIEL

Institut für Anorganische Chemie der Universität Göttingen. Tammannstrasse 4, D-3400 Göttingen (B.R.D.)

(Eingegangen den 8. Dezember 1977)

Summary

Fluorosilanes react with lithiated amines to yield aminofluorosilanes. Iso- and sec-butylaminofluorosilanes with bulky ligands form the isomers (I–VII). The cyclisation of monoorganofluorosilanes depends on the size of the substituents. IV and V dimerise by HF-elimination (VIII, IX) and VII cyclises by migration of a methanide ion (X). The mass, ¹H, ¹⁹F and ²⁹Si NMR spectra of the compounds are reported.

Zusammenfassung

Fluorsilane reagieren mit lithiierten Aminen zu Aminofluorsilanen. Iso- und sec-Butylaminofluorsilane mit sperrigen Substituenten bilden Isomere I-VII. In der Reaktion mit Butyllithium cyclisieren Monoorganylaminofluorsilane in Abhängigkeit von der Substituentengrösse. IV und V dimerisieren unter HF-Eliminierung (VIII, IX), und VII cyclisiert unter Methanidionen wanderung (X). Die Massen-, ¹H-, ¹⁹F- und ²⁹Si-NMR-Spektren der Verbindungen werden mitgeteilt.

Einleitung

Fluorsilane reagieren mit lithiierten Aminen unter Substitution [1,2]. Kürzlich konnte mit Hilfe der ¹⁹F-Kernresonanzspektroskopie gezeigt werden [3], dass sec-Butylaminofluorsilane des Typs s-C₄H₉SiF₂NRR' ($R \ge CH_3$, $R' > CH_3$) bei Raumtemperatur eine F—Si—F-Kopplung aufweisen. Als Ursache dieser Kopplung wurde die Nachbarschaft der SiF₂-Gruppe zum asymmetrischen C-Atom diskutiert, jedoch, da die Kopplung erst mit zunehmender Grösse der Substituenten auftritt, die Möglichkeit einer gehinderten Rotation um die Si—N- oder Si—C-Bindung nicht ausgeschlossen.

Der Reaktionsmechanismus in der Umsetzung der Monoorganylaminofluorsilane mit metallorganischen Verbindungen, hier Butyllithium, ist abhängig von 34

TABELLE 1

CHEMISCHE VERSCHIEBUNGEN δ ⁽¹H), δ ⁽¹⁹F), δ ⁽²⁹Si) UND KOPPLUNGSKONSTANTEN J(HF) UND J(SiF) DER DARGESTELLTEN VERBINDUNGEN

Verbin- dung I	δ(¹ H) (ppm) ^a		δ(¹⁹ F) (ppm) ^b	δ(²⁹ Si) (ppm) ^c	J(HF) (Hz)	J(SiF)(Hz)
	0.93 2.1/0.8 2.58	С(СН ₃) ₃ i-C ₄ H ₉ d NCH ₃	3.8 3.6	+2.8	1.1 FSiC(CH ₃) ₃ 1.5 FSiNCH ₃	287.8
11	1.00 2.1/0.8 2.95 7.1	С(СН ₃) ₃ i-C4H9 ^d NCH3 C6H5	3.6 3.4	+5.2	1.2 FSiC(CH ₃) ₃ 1.7 FSiNCH ₃	294.2
ш	0.99 1.8/0.7 2.56 2.57	С(СН ₃) ₃ s-C4H9 ^d NCH3 NCH3	6.2 7.4	÷0.7	1.2 FSiC(CH ₃) ₃ 1.55 FSiNCH ₃ 1.55 FSiNCH ₃	289.9
IV	0.06 1.25 1.8/0.8 2.22 3.37 6.8	SiCH ₃ C(CH ₃) ₂ s-C ₄ H ₉ ^d CH ₃ CH CH C ₆ H ₄	26.5 25.4	+3.7 SiCH ₃ +3.5 SiCH ₃ -23.6 SiF -23.7 SiF	0.5 FSiNSiCH ₃ 1.1 FSiNCCH ₃	1.5 FSiNSi 1.7 FSiNSi 275.3 FSi 275.3 FSi
v	0.21 1.8/0.8 2.23 6.9	SiCH ₃ s-C4H9 ^d CH3 C6H4	31.0 30.6	+3.9 SiCH ₃ +3.7 SiCH ₃ —24.9 SiF	1.1 FSiNSiCH ₃	1.7 FSiNSi 1.9 FSiNSi 271.6 FSi
VI	0.23 1.8/0.8 1.23	SiCH3 s-C4H9 d C(CH3)3	32.1	+2.4 SiCH ₃ +2.1 SiCH ₃ —23.4 SiF —23.7 SiF	1.1 FSiNSiCH ₃ 0.3 FSiNCCH ₃	1.2 FSiNSi 1.8 FSiNSi 271.6 FSi 271.0 FSi
VII	0.27 0.26 1.7/0.8 1.24 1.40 1.41	SiCH ₃ SiCH ₃ s-C ₄ H9 ^d NHC(CH ₃) ₃ NC(CH ₃) ₃ NC(CH ₃) ₃	31.2	+0.4 SiCH ₃ 22.6 SiF 23.0 SiF	1.5 FSiNSiCH ₃ 1.5 FSiNSiCH ₃ 0.3 FSiNHCCH ₃ 0.5 FSiNCCH ₃ 0.5 FSiNCCH ₃	272.2 FSi 271.6 FSi
VIII e	0.53 1.33 2.15	SiCH ₃ C(CH ₃) ₂ CH ₃				
IXf	0.06 0.07 1.4/0.6 2.3 7.0	SiCH ₃ SiCH ₃ s-C ₄ H9 ^d CH ₃ C ₆ H ₄		+3.8 SiCH ₃ -5.6 SiCH ₃ -24.2 SiN -24.3 SiN		
x	0.26 0.31 1.5/0.8 1.13	SiCH ₃ SiCH ₃ s-C ₄ H9 ^d C(CH ₃) ₃		+3.2 +0.1		

^a 30%-ige Lösung in CH₂Cl₂, TMS intern. ^b 30%-ige Lösung in CH₂Cl₂, C₆F₆ intern. ^c 50%-ige Lösung in C₆F₆, TMS intern. ^d Überlagerte Multipletts. ^e 10%-ige Lösung in C₆H₆, TMS intern. ^f cis/trans-isomere.

den sterischen und mesomeren Effekten der Liganden [4]. Wird die Dimerisation [4,5] durch den sterischen Aufbau der Substituenten verhindert, so kann die Cyclisierung in einer nucleophilen 1,3-Umlagerung am Silicium erfolgen [4,6].

Ergebnisse und Diskussion

Die Substitution eines weiteren Fluoratoms durch Alkyl- oder Aminsubstituenten in iso- (I, II) als auch sec-Butylaminofluorsilanen (III–VII) führt gemäss Gl. 1 zur Bildung der Aminofluorsilane I–VII, deren NMR-Spektren, wie im spektroskopischen Teil kurz diskutiert wird, das Vorliegen isomerer Verbindungen aufzeigen.

 $\begin{array}{c} R' \\ R \xrightarrow{l} \\ R \xrightarrow{l} \\ F \end{array} \xrightarrow{F} \xrightarrow{F} \xrightarrow{R''} R \xrightarrow{R'''} R \xrightarrow{R''} R \xrightarrow{R''} R \xrightarrow{R''} R \xrightarrow{R'''} R \xrightarrow{R''} R \xrightarrow{R'''} R \xrightarrow{R''} R \xrightarrow{R'''} R \xrightarrow{R'''$

 $= i-C_4H_9$, R' = C(CH₃)₃, $R''' = CH_3$ (I) R $R'' = CH_3,$ $R''' = C_6 H_5$ $R'' = CH_3,$ $= i-C_4H_9, R' = C(CH_3)_3,$ II) R $\mathbf{R}'' = \mathbf{CH}_{3},$ $R'' = CH_3$ $= s - C_4 H_9$, R' = C(CH₃)₃, (III) R R'' = H, $R''' \approx p - C_6 H_4 C H_3$ (IV) $R = s - C_4 H_9$, $R' = N - i - C_3 H_7 Si(CH_3)_3$, $\mathbf{R}''' = p \cdot \mathbf{C}_6 \mathbf{H}_4 \mathbf{C} \mathbf{H}_3$ (V) R = $s-C_4H_9$, R' = N[Si(CH_3)_3]_2, $R''' = C(CH_3)_3$ $= s \cdot C_4 H_9, R' = N[Si(CH_3)_3]_2,$ (VI) R $R''' = C(CH_3)_3$ (VII) $R = s - C_4 H_9$, $R' = NC(CH_3)_3 Si(CH_3)_3$,

In Abhängigkeit von der Substituentengrösse zeigen Aminofluorsilane in der Reaktion mit metallorganischen Verbindungen unterschiedliche Cyclisierungsmechanismen, die als Nachweis für das intermediäre Auftreten eines Silicium-Ylids dienen [4,6]. Die Umsetzung von IV und V mit Butyllithium führt unter LiF- und Butanabspaltung in einer (2 + 2) Cycloaddition zu den viergliedrigen Ringverbindungen VIII und IX (Gl. 2).

Der erhöhte Raumbedarf der Liganden von VII bewirkt, dass unter gleichen Reaktionsbedingungen nach einer Methanidionen-Wanderung hier intramolekular der Heterocyclus X entsteht (Gl. 3).

$$VII \xrightarrow{+\text{LiC}_{4}\text{H}_{9}}_{-\text{LiF}, -\text{C}_{4}\text{H}_{10}} \xrightarrow{\text{S}-\text{C}_{4}\text{H}_{9}\text{Si}-\text{NC}(\text{CH}_{3})_{3}}_{(\text{CH}_{3})_{3}\text{CN}-\text{SiCH}_{3}}$$
(3)

Spektroskopische Untersuchungen

Die den NMR-Spektren zu entnehmenden Parameter $\delta({}^{1}H)$, $\delta({}^{19}F)$, $\delta({}^{29}Si)$ sowie J(HF) und J(SiF) sind in der Tabelle 1 aufgeführt. Das Auftreten von zwei unterschiedlichen chemischen Verschiebungen in den ${}^{19}F$ -NMR-Spektren von I–V

(1)

zeigt das Vorliegen isomerer Verbindungen. Aufgrund einer Linienverbreiterung sind die ¹⁹F-NMR-Spektren der s-C₁H₉-substituierten Verbindungen VI und VII allein nicht aussagekräftig. Die gewünschten Informationen sind hier den ²⁹Si-NMR-Spektren zu entnehmen. Die ²⁹Si-NMR-Spektren von IV—VII zeigen eine Dublizität der Multipletts, so dass für die einzelnen isomeren Formen je eine Angabe der chemischen Verschiebungen und Kopplungen erfolgt.

Im ¹H-NMR-Spektrum von III treten für die Dimethylamingruppe zwei Dubletts (${}^{4}J(HF)$ 1.55 Hz) und im ¹H-NMR-Spektrum von VII für die Trimethylsilylgruppe zwei Dubletts (${}^{5}J(HF)$ 1.5 Hz) auf. Die t-Butylgruppe von VII zeigt ein Pseudotriplett (überlagerte Dubletts).

Die Verbindungen III-VII enthalten ausser chiralem Silicium s-Butylsubstituenten, so dass das Erscheinungsbild der NMR-Spektren durch das Vorliegen von Diastereoisomeren und Racematen erklärt werden kann. Unterschiedliche chemische Verschiebungen können in diesen sperrig gebauten Amininofluorsilanen jedoch ebenfalls durch eine gehinderte Si-N-Rotation hervorgerufen werden, so dass dieser Effekt ausser für die iso- auch für die sec-butylsubstituierten Fluorsilane diskutiert werden muss. Arbeiten, die einer weiteren Klärung dienen, werden derzeit durchgeführt.

Die iso- und sec-Butylgruppen treten in den ¹H-NMR-Spektren als überlagerte Multipletts auf. IX liegt als *cis/trans* Isomerengemisch im Verhältnis 1 : 1 vor.

Die Heterocyclen VIII und X zeigen die zu erwartenden NMR-Spektren.

Beschreibung der Versuche

Die Versuche wurden unter Ausschluss von Luftfeuchtigkeit ausgeführt. Massenspektren: CH 5 Spektrometer der Firma Varian MAT, 70 eV (Peaks über

Verbindung	Bruttoformel	Mol. Gew.	Analyt. Daten gef. (ber.) (%)			
			с	н	N	
I	C ₁₀ H ₂₄ FNSi	205.4	58.48	11.78	6.82	
			(58.34)	(11.80)	(6.55)	
II	C ₁₅ H ₂₆ FNSi	267.5	67.36	9.80	5.24	
			(67.45)	(9,80)	(5.40)	
III	C ₁₀ H ₂₄ FNSi	205.4	58.48	11.78	6.82	
			(58.44)	(11.73)	(6.78)	
IV	C ₁₇ H ₃₃ FN ₂ Si ₂	340.6	59.94	9.76	8.22	
	•••••		(59.96)	(9.82)	(8.28)	
v	C ₁₇ H ₃₅ FN ₂ Si ₃	370.7	55.08	9.52	7.56	
			(55.29)	(9,40)	(7.74)	
VI	C14H37FN2Si3	336.7	49.94	11.08	8.32	
	1. 1. 1. 1		(50.01)	(11.17)	(8.24)	
VII	C ₁₅ H ₃₇ FN ₂ Si ₂	320.6	56.19	11.63	8.74	
			(56.26)	(11.59)	(8.63)	
VIII	C34H64N4Si4	641.3	63.68	10.06	8.74	
			(63.52)	(9.93)	(8.91)	
IX	Cz4H68N4Si6	701.5	58.22	9.77	7.99	
	5, 55, 5		(58.53)	(9.58)	(7.98)	
х	C15H36N2Si2	300.6	59.93	12.07	9.32	
			(59.89)	(11.81)	(9.12)	

TABELLE 2

ANALYTISCHE DATEN UND MOLEKULARGEWICHTE DER VERBINDUNGEN I-X

m/e = 100 bzw. 200 mit mehr als 5%, Molekülpeak auch bei geringerer Intensität). ¹H- und ¹⁹F-NMR-Spektren: Hochauflösendes Bruker 60 E-Kernresonanzgerät. ²⁹Si-NMR-Spektren: Bruker HX-8-Kernresonanzgerät. Die Molmassenbestimmungen erfolgten massenspektroskopisch. Tabelle 2 zeigt die analytischen Daten und Molekulargewichte der Verbindungen I-X.

Aminofluorsilane I-VII

In die Lösung von 0.1 Mol der Fluorsilane (I-III) bzw. 0.1 Mol der Aminofluorsilane (IV-VII) in 100 ml Petroläther wird bei Raumtemperatur eine Lösung von 0.1 Mol der entsprechenden lithiierten Amine in 100 ml THF unter Rühren getropft. Anschliessend wird 2 Std. zum Sieden erhitzt, man zieht die Lösungsmittel im Vakuum ab und destilliert die entstandenen Verbindungen fraktioniert. I-VII sind mit organischen Lösungsmitteln gut mischbar.

N-(*i*-Butyl-t-butylfluorsilyl)-*N*-dimethylamin (I). Ausbeute 75%, Sdp. 63°C/8 Torr. MS (70 eV): m/e 205 (40) $[M]^+$, 165 (20), 161 (12), 148(100) $[M - C_4H_9]^+$, 123 (32), 106 (81).

N-(*i*-Butyl-*t*-butylfluorsilyl)-*N*-dimethylamin (*I*). Ausbeute 75%, Sdp. 63°C/8 Torr. MS (70 eV): m/e 267 (37) $[M]^{+}$, 210 (62) $[M - C_4H_9]^{+}$, 176 (14), 168 (27), 154 (100), 134 (7), 121 (15), 106 (89).

N-(s-Butyl-t-butylfluorsilyl)N-dimethylamin (III). Ausbeute 85%, Sdp. 91°C/ 30 Torr. MS (70 eV): m/e 205 (56) $[M]^+$, 148 (100) $[M - C_4H_9]^+$, 135 (15), 120 (41), 106 (96).

i-Propyl(trimethylsilyl)amino-p-toluidino-s-butylfluorsilan (IV). Ausbeute 88%, Sdp. 102°C/0.01 Torr. MS (70 eV): m/e 340 (100) $[M]^+$, 325 (98) $[M - CH_3]^+$, 283 (58) $[M - C_4H_9]^+$, 269 (9), 267 (11) $[M - Si(CH_3)_3]^+$, 241 (29), 233 (71), 225 (36), 218 (17), 211 (10), 205 (18).

Bis(trimethylsilyl)amino-p-toluidino-s-butylfluorsilan (V). Ausbeute 80%, Sdp. 126°C/0.05 Torr. MS (70 eV): m/e 370 (81) $[M]^+$, 355 (81) $[M - CH_3]^+$, 313 (100) $[M - C_3H_9]^+$, 297 (25) $[M - Si(CH_3)_3]^+$, 283 (14), 225 (16), 221 (43).

t-Butylamino-bis(trimethylsilyl)amino-s-butylfluorsilan (VI). Ausbeute 72%, Sdp. 60°C/0.01 Torr. MS (70 eV): m/e 336 (6) $[M]^+$, 321 (41) $[M - CH_3]^+$, 279 (5) $[M - C_4H_9]^+$, 268 (50), 265 (35), 229 (26), 223 (59), 212 (100).

t-Butylamino-*t*-butyltrimethylsilylamino-*s*-butylfluorsilan (VII). Ausbeute 81%, Sdp. 57°C/0.01 Torr. MS (70 eV): m/e 320 (7) $[M]^+$, 305 (21) $[M - CH_3]^+$, 263 (13) $[M - C_4H_9]^+$, 252 (20), 249 (64), 232 (53), 213 (36), 207 (100).

Diazadisilacyclobutane VIII–X

Zu 0.1 Mol IV, V und VII wird 0.1 Mol Butyllithium (15%-ige Lösung in Hexan) getropft. In exothermer Reaktion werden LiF und Butan abgespalten. Anschliessend wird 3 Std. zum Sieden erhitzt, das Hexan im Vakuum abgezogen. Man sublimiert die entstandenen Verbindungen im Vakuum (VIII, IX) bzw. destilliert fraktioniert (X).

1,3-Di-p-toluyl-2,4-di-s-butyl-2,4-di(iso-propyltrimethylsilylamino)-1,3-diaza-•2,4-disilacyclobutan (VIII). Ausbeute 25%, Fp. 265°C. MS (70 eV): m/e 640 (55) $[M]^*$, 583 (100) $[M - C_4H_9]^*$, 526 (87), 511 (8), 452 (22), 410 (13), 353 (28), 305 (58), 264 (84), 250 (12), 214 (49), 206 (20).

1,3-Di-p-toluyl-2,4-di-s-butyl-2,4-di[bis(trimethylsilyl)amino]-1,3-diaza-2,4disilacyclobutan (IX). Ausbeute 40%. Fp. 129°C. MS (70 eV): m/e 700 (1) 38

 $[M]^{+}$, 685 (5) $[M - CH_3]^{+}$, 643 (100) $[M - C_4H_9]^{+}$, 571 (7), 556 (38), 515 (20), 500 (5), 465 (14), 409 (7), 317 (7), 293 (6), 261 (7).

1,3-Di-t-butyl-2-s-butyl-2,4,4-trimethyl-1,3-diaza-2,4-disilacyclobutan (X). Ausbeute 85%, Sdp. 65°C/0.01 Torr. MS (70 eV): m/e 300 (4) $[M]^+$, 285 (79) $[M - CH_3]^+$, 243 (100) $[M - C_4H_9]^+$.

Dank

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie unterstützt.

Literatur

1 U. Warnagat und H. Bürger, Angew. Chem., 76 (1964) 497; Angew, Chem. Int. Ed. Engl., 3 (1964) 446.

2 U. Klingebiel und A. Meller, Z. Anorg. Allg. Chem., 430 (1977) 234.

3 U. Klingebiel, Z. Anog. Allg. Chem., im Druck.

4 U. Klingebiel und A. Meller, Z. Anorg. Allg. Chem., 428 (1977) 27.

5 U. Klingebiel, D. Bentmann und A. Meller, J. Organometal. Chem., 144 (1978) 381.

6 U. Klingebiel und A. Meller, Angew. Chem., 88 (1976) 307.